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1 Introduction and summary

Surface operators are higher-dimensional analogues of the usual Wilson and ’t Hooft loop

operators in gauge theory that are supported on a codimension two submanifold of space-

time. They are defined by specifying a certain type of singularity in the relevant fields as

one approaches the submanifold. Such operators were first used to probe the dynamics

of gauge theory and black holes in [3]–[5]. Thereafter, they appeared in the mathemat-

ical literature in an application to Donaldson theory [1, 6], and in the relation between

instantons, Seiberg-Witten theory and integrable systems [7, 8].

More recently, in an effort to furnish a gauge-theoretic interpretation of the geometric

Langlands program with ramification, surface operators have also been considered in a

twisted version of N = 4 supersymmetric Yang-Mills theory in four dimensions [9]. They

have also made an appearance in the context of the AdS/CFT correspondence between

N = 4 SYM and type IIB supergravity [10]–[14], whereby the proposed action of the

SL(2,Z) duality group on the parameters of a surface operator in [9], has been shown to

be consistent in a dual type IIB supergravity description in [14].

To date, there has not been an explicit way to prove that the parameters of a surface

operator in the N = 4 gauge theory ought to transform as proposed in [9]. Moreover, most
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examples involve only trivial embeddings of surface operators in spacetime; not much is

known about the action of the SL(2,Z) duality group on the parameters of surface operators

that are nontrivially-embedded.

Nonetheless, an explicit proof of the proposed transformation of parameters under an

SL(2,Z) duality, was recently furnished in [15] for a pure, non-supersymmetric abelian

gauge theory with trivially and nontrivially-embedded surface operators. In particular,

it was found that for a nontrivially-embedded surface operator, exact S-duality (in the

sense that the dual theory is of the same kind as the original theory, albeit with an in-

verted complexified gauge coupling) can only be maintained if its “quantum” parameter

effectively vanishes, while the overall SL(2,Z) (or Γ0(2)) duality holds up to a c-number

at most, always. Also, the partition function and correlation functions of non-singular,

gauge-invariant local operators transform, on curved four-manifolds, like modular forms of

SL(2,Z) albeit with different modular weights.

A summary of the paper. In this paper, we will generalise the analysis in [15] to super-

space, and explicitly show that for an arbitrarily-embedded surface operator in a general,

twisted N = 2 pure abelian gauge theory on any spin (or non-spin) four-manifold, the pa-

rameters transform naturally under the SL(2,Z) (or Γ0(2)) duality of the theory. However,

just as in the non-supersymmetric case, for a nontrivially-embedded surface operator, exact

S-duality holds if and only if the “quantum” parameter effectively vanishes, while the over-

all SL(2,Z) (or Γ0(2)) duality holds up to a c-number at most, regardless. Nevertheless, this

observation sets the stage for forthcoming work [2] that will provide, among other things, a

physical proof of a remarkable mathematical result by Kronheimer and Mrowka [1], which,

expresses a “ramified” analog1 of the Donaldson invariants of a four-manifold solely in

terms of the ordinary Donaldson invariants. This mathematical result is also crucial to

the formulation of an important structure theorem in Donaldson theory [1, 16], that first

motivated the interpretation of the ordinary Donaldson invariants in terms of the ordinary

Seiberg-Witten invariants in [17]. We shall furnish a sketch of the general ideas behind this

physical proof, and briefly explain how one can relate the “ramified” Donaldson invariants

to the ordinary and “ramified” Seiberg-Witten invariants when we have a nontrivially and

trivially-embedded surface operator, respectively. As a prelude to our forthcoming work,

we will compute the effective interaction on the u-plane when the four-manifold is curved.

We will also demonstrate a dependence on certain second Stiefel-Whitney classes, and the

appearance of a Spinc structure in the associated low-energy Seiberg-Witten theory with

surface operators, at points in moduli space where massless monopoles and dyons appear.

In the process, we will stumble upon an interesting phase factor which one must include

in the low-energy path-integral of the dual “magnetic” theory that is otherwise absent in

the “unramified” case. As we shall see, the non-supersymmetric analysis in [15] will prove

to be useful and insightful for our purposes.

1That is, an analog which includes surface operators that introduce a singularity in the SU(2) or SO(3)

gauge field strength along a two-dimensional submanifold of the four-manifold.
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2 Surface operators in N = 2 abelian gauge theory

2.1 Description of the relevant surface operators

The parameters α and η. In this paper, we shall consider surface operators that are

supported on an arbitrary two-submanifold D in a general, twisted N = 2 pure abelian

gauge theory on some four-manifold M , where D and M are assumed to be closed and

oriented. The surface operator is to be characterised by a gauge field solution that gives

rise to a singular field strength as one approaches D. In addition, the gauge field solution

must be invariant under rotations of the plane D′ normal to D.

An example of such a gauge field solution is

A = αdθ̂, (2.1)

where α is a “classical” parameter valued in U(1),2 and θ̂ is the angular component of the

local coordinate z = reiθ̂ on D′ near D. Noting that d(dθ̂) = 2πδD (where δD is a two-form

delta function supported at the origin of z, that is also Poincaré dual to D), we find the

corresponding field strength to be

F = 2παδD . (2.2)

As required, F is singular as one approaches D. In such a case, we say that the theory

is “ramified”.

However, note from footnote 2 that we are free to shift α by u via a gauge transfor-

mation. As such, this definition of F appears to be unnatural. This can be remedied by

lifting α in (2.2) from U(1) to u(1), such that it is no longer true that α ∼ α+u, that is, F ,

when restricted to D, is u(1)-valued. Equivalently, this corresponds to finding an extension

of the U(1)-bundle E on M with connection A, over D (whereby due to the singularity

along D, the bundle E is originally defined on the complement of D in M only). Such

an extension exists whenever E is a U(1)-bundle on M . Thus, the definition of F in (2.2)

actually does make sense.

Notice that since we have an extension of the bundle E over D, we roughly have an

abelian gauge theory in two dimensions onD. As such, one can introduce a two-dimensional

theta-like angle η as an additional “quantum” parameter, which enters in the Euclidean

path-integral via the phase

exp

(
iη

∫

D
F

)
. (2.3)

Notice that η must therefore take values in R/Z, since the integrated first Chern class∫
D F/2π of the U(1)-bundle E → D, is an integer. Just like α, one can shift η (by an

integral lattice) whilst leaving the theory invariant.

2Such a parameter of the gauge field ought to be valued in the (real) Lie algebra u(1). However, as

explained in [9], one can shift the parameter α → α + u in a particular gauge transformation, whereby

exp(2πu) = 1. The only invariant of such a gauge transformation is the monodromy exp(−2πα) of the

gauge field A around a circle of constant r. Hence, α must take values in U(1) instead.
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A point on nontrivially-embedded surface operators. More can also be said about

the parameter α as follows. In the case when the surface operator is trivially-embedded

in M , that is, M = D′ × D and the normal bundle to D is hence trivial, the self-

intersection number

D ∩D =

∫

M
δD ∧ δD (2.4)

vanishes. On the other hand, for a nontrivially-embedded surface operator supported

on D ⊂ M , the normal bundle is nontrivial, and the intersection number is non-zero.

The surface operator is then defined by the gauge field with singularity in (2.1) in each

normal plane.

When the intersection number is non-zero, or rather for nontrivially-embedded surface

operators, there is a restriction on the values that α can take. To explain this, first note that

since F = 2παδD near D, we find, using (2.4), that
∫
D F/2π =

∫
M δD ∧ F/2π = α D ∩D.

Since the integrated first Chern class
∫
D F/2π is always an integer, we must have

α D ∩D ∈ Z. (2.5)

This observation has an extension to the non-abelian case as follows [9]: if α→ f(α) is any

real-valued linear function on t (the Lie algebra of the maximal torus of the non-abelian

group) that takes integer values on the cocharacter lattice Λcochar, then

f(α)D ∩D ∈ Z. (2.6)

In particular, the only gauge transformations that can be defined globally along D, are

those that shift α in such a way as to maintain the condition (2.5) or (2.6). This point will

be important later.

Supersymmetry and the surface operator. Note that the surface operators defined

above are actually supersymmetric and compatible with the N = 2 supersymmetry of the

abelian gauge theory to be discussed in this paper. In other words, their inclusion does

not affect the supersymmetry of the underlying theory.

To see this, first note that any supersymmetric field configuration of a theory must

obey the conditions implied by setting the supersymmetric variations of the fermions to

zero. In the original (untwisted) theory without surface operators, this implies that any

supersymmetric field configuration must obey F = 0 and ∇µa = 0, where a is a scalar field

in the N = 2 vector multiplet [18]. Let us assume for simplicity the trivial solution a = 0 to

the condition ∇µa = 0 (so that the relevant moduli space is non-singular); this means that

any supersymmetric field configuration must be consistent with irreducible flat connections

on M that obey F = 0. Consequently, the presence of any surface operator along D—which

effects a monodromy exp(−2πα) in the gauge field A as one traverses a loop that links the

surface D—that is supposed to be supersymmetric and compatible with the underlying

N = 2 supersymmetry, ought to correspond to a flat irreducible connection on the U(1)-

– 4 –
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bundle E restricted to M \D which has the required singularity along D;3 equivalently, it

must correspond to a flat irreducible connection on a U(1)-bundle E′ over M whose field

strength is F ′ = F − 2παδD , where F = dA is the field strength of the bundle E over M

that is hence singular along D. In other words, a supersymmetric surface operator will

correspond to a gauge field solution A that satisfies F ′ = 0; that is, F = 2παδD . Indeed,

this is the condition (2.2) that characterises our surface operator in the first place.

As a result of the singularity (2.2) when one includes a surface operator in the theory,

the effective field strength in the Lagrangian that contributes non-vanishingly to the path-

integral must be a shifted version of the field strength F . (We shall explain this in greater

detail below). At any rate, note that since the surface operator does not introduce any

singularities in the other fields of the underlying theory, it suffices to modify only the field

strength to obtain the effective Lagrangian. That being said, in a different theory whereby

supersymmetric configurations involve not just the field strength F but also the other fields,

a supersymmetric surface operator would give rise to a singularity along D in the other

fields as well. For example, in the pure N = 4 theory considered in [9], supersymmetric

configurations involve the Higgs field φ in addition to the field strength F . Consequently,

the inclusion of a surface operator in the N = 4 theory that is supposedly supersymmetric,

will also give rise to a singularity in φ along D.

2.2 Action of duality on trivially-embedded surface operators

Action of S-duality. We shall now discuss the case of a trivially-embedded surface

operator — with a-priori non-vanishing parameters (α, η)—in a general, twisted N = 2

pure abelian gauge theory on any smooth four-manifold M . Our first objective is to prove

explicitly that the parameters transform as

(α, η) → (η,−α) (2.7)

under the S-duality transformation S : τ(a) → −1/τ(a) of the supersymmetric gauge

theory. Here, τ(a) = Θ(a)/2π + 4πi/g2(a) is the effective complexified gauge coupling

in the vacuum parameterised by a. To this end, we shall adapt the approach of [15]

to superspace.

Firstly, let us note that the most general action of an N = 2 pure abelian gauge theory

in Minkowski space can be written as [20]

I = − 1

2π
Im

[∫
d4xd2θd2θ̄

∂F
∂A

Ā+

∫
d4xd2θ

1

2

∂2F
∂A2

WαWα

]
, (2.8)

where A and W are a chiral superfield and a chiral spinorial (abelian) superfield strength

in N = 1 superspace, whose components together make up the N = 2 vector multiplet

that defines the pure N = 2 abelian gauge theory. Also, F is a holomorphic function of

3This prescription of considering connections on the bundle E restricted to M \D whenever one inserts

a surface operator that introduces a field singularity along D, is just a two-dimensional analog of the

prescription one adopts when inserting an ‘t Hooft loop operator in the theory. See §10.1 of [19] for a

detailed explanation of this.

– 5 –
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A, from which one can obtain the Kähler potential of the one-complex dimensional moduli

space of the theory as the scalar component of

K = Im

(
∂F
∂A

Ā

)
. (2.9)

The metric on the moduli space can thus be written as

(ds)2 = gaādadā = Imτ(a)dadā, (2.10)

where a is the scalar component of A, and τ(a)—which is a holomorphic function of a—is

given by

τ(a) =
∂2F(a)

∂a2
. (2.11)

Consequently, one can rewrite the most general action as

I = − 1

2π
Im

[∫
d4xd2θd2θ̄

∂F
∂A

Ā

]
− 1

4π
Im

[∫
d4xd2θ τ(A) WαWα

]
, (2.12)

where

τ(A) =
∂2F(A)

∂A2
. (2.13)

Now, let us for ease of illustration, consider the case of F(A) = 1
2τclA

2, where τcl =

Θ/2π + 4πi/g2 is the classical complexified gauge coupling that is independent of a and

is thus constant. In this case, one has τ(A) = τcl, and the second term in (2.12) can be

written (after eliminating an auxiliary field D using its equation of motion) as

I2 =
1

g2

∫
d4x

(
1

2
FµνF

µν + 2iλσµ∂µλ̄

)
− Θ

8π2

∫

M
F ∧ F, (2.14)

where we have used the fact that W has an expansion

Wα = −iλα(x) + θαD(x) + i(σµνθ)αFµν(x) + θθ(σµ∂µλ̄(x))α, (2.15)

and the identity

(σµν)αβ(σρσ)αβ =
1

2
(gµρgνσ − gµσgνρ) − i

2
ǫµνρσ. (2.16)

In the above, the σµ’s are the Pauli matrices such that σµν
α

β = 1
4(σµ

αα̇σ̄
να̇β − σν

αα̇σ̄
µα̇β),

where α, α̇ = 1, 2. Also, our convention is such that ǫ0123 = 1.

The action I2 is equivalent to a dual action I2,D in the dual fields FD, λD and λ̄D with

gauge coupling τD = −1/τ , as first shown in [21]. Moreover, since the ordinary instanton

number − 1
8π2

∫
M F ∧F is always an integer, the theory is also invariant under Θ → Θ+2π,

that is, τ → τ + 1. Our immediate objective is to show that a similar duality holds when

we include surface operators in the theory with action I2.

Note at this point that when we include a surface operator along D ⊂M , a singularity

in the field strength of the form 2παδD will be introduced near D. In addition, one must

also include in the Euclidean action the topological term −iη
∫
D F , as mentioned earlier.

However, notice that since the kinetic term of the gauge field in I2 has a positive-definite

– 6 –
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real part, the Euclidean path-integral (which is what we would eventually be interested in)

would be non-vanishing only if the contributions to the kinetic term are non-singular. As

such, one can equivalently study the action with field strength F ′ = F − 2παδD instead of

F , whenever we have a surface operator along D. This important fact was first pointed out

in [9], and further exploited in [15] to prove the S-duality in the non-supersymmetric case.

Hence, in the presence of a surface operator along D, the effective Minkowskian action to

consider takes the form

I ′2 =
1

g2

∫
d4x

(
1

2
F ′

µνF
′µν

+ 2iλσµ∂µλ̄

)
− Θ

8π2

∫

M
F ′ ∧ F ′ + η

∫

D
F ′. (2.17)

In turn, note that I ′2 can be written in superspace as

I ′2 = − 1

4π
Im

[∫
d4xd2θ τ(A) W ′αW ′

α

]
+

1

2π
Im

[∫
d4xd2θ [i2πη(δD)µν(σµνθ)]αWα

]
,

(2.18)

where W ′
α = Wα − i2πα(δD)µν(σµνθ)α, that is,

W ′
α = −iλα(x) + θαD(x) + i(σµνθ)α(F − 2παδD)(x)µν + θθ(σµ∂µλ̄(x))α. (2.19)

Note that in order to arrive at (2.18), we have used the identities∫
d2θ i(δD)µν(σµνθ)α i(σρσθ)αFρσ

= −1
2(σµν)αβ(σρσ)αβ(δD)µνFρσ and (2.16), the relation η

∫
D F

′ =
∫
M δD ∧F ′, and the fact

that for trivially-embedded surface operators, the term −2πηα
∫
M δD ∧ δD that would

generically appear, can be set to zero, since D ∩D = 0 in this case.

Notice that since W ′ persists as a (spinorial) chiral superfield,4 the first term in I ′2
remains invariant under supersymmetry transformations. Similarly, since the second term

just corresponds to the topological term η
∫
M δD∧F ′, it will be invariant under supersymme-

try transformations as well. Therefore, I ′2 persists as a valid N = 2 supersymmetric action.

Another point to note at this juncture is that apart from satisfying the chirality con-

dition D̄β̇Wα = 0, W also satisfies the superspace Bianchi identity Im(DαW
α) = 0. In

order to implement this condition on W , we can add to the action (2.18) the Lagrange

multiplier term

Im = − 1

8π
Im

[∫
d4xd2θd2θ̄ VDDαW

α

]
= − 1

2π
Im

[∫
d4xd2θ (WD)αWα

]
, (2.20)

where VD is a real Lagrange multiplier superfield with chiral field strength (WD)α =

−1
4D̄

2DαVD, such that one can write

(WD)α = −i(λD)α(x) + θαD̃(x) + i(σµνθ)α(FD)µν(x) + θθ[σµ∂µ(λ̄D)(x)]α, (2.21)

where the subscript “D” indicates that the above fields are dual to the corresponding fields

in W of (2.15). (This statement will be justified shortly).

4This is true because one can also write W ′
α = − 1

4
D̄D̄DαV ′ for some vector superfield V ′, where

Dα = ∂
∂θα

+ iσµ
αα̇θ̄α̇∂µ and D̄α̇ = − ∂

∂θ̄α̇
− iθασµ

αα̇∂µ, such that D̄β̇W ′ = 0; that is, W ′ is also a chiral

superfield.

– 7 –
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Consequently, the action can now be written as

I = I ′2 + Im = − 1

4π
Im

[∫
d4xd2θ τ(A) W ′αW ′

α

]
− 1

2π
Im

[∫
d2θ (W ′

D)αWα

]
, (2.22)

where (W ′
D)α = (WD)α − i2πη(δD)µν(σµνθ)α, that is,

(W ′
D)α = −i(λD)α(x)+ θαD̃(x)+ i(σµνθ)α(FD −2πηδD)(x)µν + θθ[σµ∂µ(λ̄D)(x)]α. (2.23)

Let us now define the following chiral (spinorial) superfield

W̃α = W ′
α +

1

τ(A)
(W ′

D)α, (2.24)

where W ′
α and (W ′

D)α are given in (2.19) and (2.23), respectively. After a straightforward

computation, we find that

I = − 1

4π
Im

[∫
d4xd2θ τ(A)W̃αW̃α

]
− 1

4π
Im

[∫
d4xd2θ

(
− 1

τ(A)

)
(W ′

D)α(W ′
D)α

]

− 1

2π
Im

[∫
d4xd2θ [i2πα(δD)µν(σµνθ)]α(W ′

D)α

]
. (2.25)

By integrating W̃ out in superspace, we can simplify I to

I = − 1

4π
Im

[∫
d4xd2θ

(
− 1

τ(A)

)
(W ′

D)α(W ′
D)α

]

− 1

2π
Im

[∫
d4xd2θ [i2πα(δD)µν(σµνθ)]α(WD)α

]
, (2.26)

where we have again made use of the fact that the term 2πηα
∫
M δD ∧ δD that would

generically appear can be set to zero, since D ∩ D = 0 for a trivially-embedded surface

operator.

By comparing (2.26) with (2.18), we find that the transformations τ(A) → −1/τ(A),

W → WD, α → η and η → −α, map I ′2 to I. Since I is supposed to be physically

equivalent to I ′2, these transformations represent a duality of the theory with action I ′2.

It is in this sense that the field components of WD are dual to those of W , as mentioned

earlier.

Notice that our above derivation of the duality does not make any reference to the

explicit form of τ(A). As such, one can generalise the computation to any τ(A) beyond

τ(A) = τcl, and still arrive at the same conclusion. In order to obtain the corresponding

spacetime expression of I ′2, one would just need to perform the θ-integration of the second

term in (2.12), and again replace F everywhere with F ′ = F − 2παδD . We shall do that

shortly, but let us proceed to discuss the first term in (2.12) now.

To this end, first note that the spacetime contributions of the first term in (2.12) do

not contain the field strength F . Therefore, by including a surface operator in the theory

— unlike what had to be done with W of the second term — there is no need to shift the

integrand ∂F/∂A or Ā. Thus, the analysis follows as in the usual case without surface
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operators in [21]. Nonetheless, we shall, for self-containment of the paper, review the

computation anyhow.

Now, if we define AD to be the chiral superfield dual to A such that

AD = h(A) =
∂F(A)

∂A
(2.27)

for some function h(A) that is holomorphic in A, then one can write the first term

in (2.12) as

− 1

2π
Im

[∫
d4xd2θd2θ̄ h(A)Ā

]
= − 1

2π
Im

[∫
d4xd2θd2θ̄ hD(AD)ĀD

]
(2.28)

if hD(AD) = hD(h(A)) = −A. Consequently, if one also defines

hD(AD) =
∂F(AD)

∂AD
= −A, (2.29)

we find (from τ(A) = ∂2F(A)/∂A2) that

− 1

τ(A)
= − 1

∂h(A)
∂A

=
∂hD(AD)

∂AD
=
∂2F(AD)

∂A2
D

= τD(AD). (2.30)

Altogether, this means that the theory with general action

I ′ = − 1

2π
Im

[∫
d4xd2θd2θ̄ h(A)Ā

]
− 1

4π
Im

[∫
d4xd2θ τ(A)W ′αW ′

α

]

+
1

2π
Im

[∫
d4xd2θ [i2πη(δD)µν(σµνθ)]αWα

]
, (2.31)

is physically equivalent to the theory with general action

I ′D = − 1

2π
Im

[∫
d4xd2θd2θ̄ hD(AD)ĀD

]
− 1

4π
Im

[∫
d4xd2θ τD(AD)(W ′

D)α(W ′
D)α

]

− 1

2π
Im

[∫
d4xd2θ [i2πα(δD)µν(σµνθ)]α(WD)α

]
. (2.32)

In other words, the transformations A → AD, h(A) → hD(AD), τ(A) → τD(AD), W →
WD, α → η and η → −α, are duality transformations of the general, N = 2 pure abelian

gauge theory with a trivially-embedded surface operator in Minkowski space.

By expanding in component fields and performing the θ-integrations in (2.31)

and (2.32), we can write the Minkowskian Lagrangian densities L′ and L′
D of the actions

I ′ and I ′D, respectively, as

L′ =
1

g2
F ′ ∧ ⋆F ′ − Θ

8π2
(F ′ ∧ F ′) +

1

2π

[
(Imτ)∂µa∂

µā+ i(Imτ)λmσµ∂µλ̄m

]

+

√
2

8π
Im

[
dτ

da
λmσµνλmF

′
µν

]
+

√
2

8π
Im

[
dτ

da
λmλnDmn

]
− 1

8π
ImτDmnD

mn (2.33)

− 1

24π
Im

[
d2τ

da2
(λmλn)(λmλn)

]
+ η(δD ∧ F ′)
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and

L′
D =

1

g2
D

F ′
D ∧ ⋆F ′

D − ΘD

8π2
(F ′

D ∧ F ′
D) +

1

2π

[
(ImτD)∂µaD∂

µāD + i(ImτD)λm
Dσ

µ∂µλ̄Dm

]

+

√
2

8π
Im

[
dτD
daD

λm
Dσ

µνλDmF
′
Dµν

]
+

√
2

8π
Im

[
dτD
daD

λm
Dλ

n
DD̃mn

]
− 1

8π
ImτDD̃mnD̃

mn

− 1

24π
Im

[
d2τD
da2

D

(λm
Dλ

n
D)(λDmλDn)

]
− α(δD ∧ F ′

D), (2.34)

where F ′ = F − 2παδD, F ′
D = FD − 2πηδD and τD(aD) = ΘD(aD)/2π + 4πi/g2

D(aD) =

−1/τ(a). (Here, aD is the scalar component of AD). Also, the indices “m” and “n”

are associated to the internal SU(2) global R-symmetry of the theory, and D is again an

auxiliary field.

We would now like to twist the theory to make it topological so that it can be defined

on an arbitrary four-manifold. To this end, let us first wick-rotate I ′ and I ′D into Euclidean

actions. This in particular, would introduce a factor of −i in the Θ, α and η terms in L′

and L′
D. Since the total, global symmetry group of the theory is H = SU(2)+ × SU(2)− ×

SU(2)R × U(1)R—where K = SU(2)+ × SU(2)− is the rotation group in four-dimensional

Euclidean space and U(2)R ≃ SU(2)R × U(1)R is the internal symmetry group — the

standard twisting recipe [23] would then entail a redefinition of the rotation group to

K′ = SU ′(2)+ × SU(2)−, where SU ′(2)+ is the diagonal combination of SU(2)+ × SU(2)R.

The spins of the fields with respect to the new rotation group K′ would then be such that

two of the original eight supercharges of the N = 2 supersymmetry would now transform

as zero-forms (that is, scalars), λ would now transform as a one-form ψ, and λ̄ would

decompose into a linear combination of a zero-form φ and a self-dual two-form χ. The

nilpotent topological supercharge — which one can now define on any four-manifold —

is a linear combination of the two supercharges that transform as zero-forms. Note that

what we have actually done in the twisting procedure is to couple the background fields

to the SU(2)R global symmetry current of the theory. Since this current is invariant under

the transformations that map I ′ to I ′D, it means that the actions Î ′ and Î ′D will also be

physically equivalent, where Î ′ and Î ′D are the twisted variants of the (Euclidean version) of

the actions I ′ and I ′D, respectively. Moreover, Î ′ can be related to Î ′D by the same duality

transformations that map I ′ to I ′D.

Since we will not need to refer to the explicit form of Î ′ or Î ′D, or the corresponding

supersymmetric variations of fields which leave them invariant, we shall, for brevity, not

state them here in this paper. Nonetheless, we can conclude that under the S-duality trans-

formation τ(a) → −1/τ(a) of the general, twisted N = 2 pure abelian gauge theory with a

trivially-embedded surface operator on an arbitrary four-manifold M , the parameters will

transform as (α, η) → (η,−α), as claimed.

Action under a shift in theta-angle. Our second objective is to prove that the pa-

rameters (α, η) transform under the symmetry T : τ(a) → τ(a) + 1 as

(α, η) → (α, η − α) (2.35)
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for M a spin manifold.

As mentioned above, the theta-angle term of the topological action Î ′ will be given by

Î ′Θ =
iΘ

8π2

∫

M
F ′ ∧ F ′. (2.36)

This can also be written as

Î ′Θ = iΘN, (2.37)

where

N =
1

2
c1(L)2 − αm, (2.38)

and L is the U(1)-bundle whose curvature is given by F , while m =
∫
D(F/2π) is the

“magnetic charge” associated with the flux throughD. A term (α2/2)D∩D that generically

appears in N has been set to zero above, since we are considering surface operators which

are trivially-embedded at this point. Also, the first term (1/2)c1(L)2 is always an integer,

since M is defined to be spin.

Next, consider the term

Î ′η = −iη
∫

D
F ′ = −iη

∫

M
δD ∧ F ′, (2.39)

which is the only term in the total action that can potentially cancel the variation of Î ′Θ
under the transformation T : Θ → Θ + 2π. It can also be written as

Î ′η = −2πiηm, (2.40)

where a term 2πiαηD ∩D has been set to zero in Î ′η above, since we are considering only

trivially-embedded surface operators here.

Thus, the sum of the two contributions to the total action is then

Î ′Θ + Î ′η = iΘN − 2πiηm. (2.41)

The variation in Î ′Θ under T : Θ → Θ + 2π is (mod 2πiZ)

∆Î ′Θ = −2πiαm. (2.42)

Hence, in order for the total contribution Î ′Θ + Î ′η to be invariant, one must have the

transformation (α, η) → (α, η − α) under T : τ(a) → τ(a) + 1, as claimed.

If M is not a spin manifold, the original theory without surface operators is only

invariant under T 2 : τ(a) → τ(a) + 2. This is because c1(L)2 is no longer an even integer.

Repeating the above analysis, we find that the parameters must transform as

(α, η) → (α, η − 2α) (2.43)

under T 2 : τ(a) → τ(a) + 2, when M is non-spin.
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Action under overall duality. Note that the SL(2,Z) duality group is an infinite dis-

crete group which acts on τ = τ(a) as

τ → (aτ + b)

(cτ + d)
,

(
a b

c d

)
∈ SL(2,Z). (2.44)

It is generated by the transformations S : τ → −1/τ and T : τ → τ + 1, where

S =

(
0 1

−1 0

)
, T =

(
1 1

0 1

)
. (2.45)

From (2.7) and (2.35), we find that α and η transform as

(α, η) → (α, η)M−1, (2.46)

where M is S or T , accordingly. Therefore, this is true for any M ∈ SL(2,Z). Hence,

we see that (α, η) transform naturally under the SL(2,Z) duality of the general, twisted

N = 2 pure abelian gauge theory on a spin manifold M . In particular, (α, η) transform

under S-duality just like magnetic and electric charges do, respectively.

On the other hand, consider the congruence subgroup Γ0(2) that is generated by the

transformations S and ST 2S, that is,

S =

(
0 1

−1 0

)
, ST 2S =

(
−1 0

2 −1

)
. (2.47)

From (2.7) and (2.43), we find that α and η transform as

(α, η) → (α, η)M
′−1, (2.48)

where M
′ is S or ST 2S, accordingly. Therefore, this is true for any M

′ ∈ Γ0(2). Hence, we

see that (α, η) transform naturally under a Γ0(2) duality of the general, twisted N = 2 pure

abelian gauge theory on a non-spin manifold M . Nonetheless, (α, η) continue to transform

under S-duality just like magnetic and electric charges do, respectively.

Analogy with A and AD. As shown above, the theory is invariant under the trans-

formations A → AD and h(A) → hD(A). Since h(A) = AD and hD(AD) = −A, it would

mean that the following is a duality transformation of the theory:
(

A

AD

)
→
(

0 1

−1 0

)(
A

AD

)
. (2.49)

In addition, let us now shift h(A) → h(A) +mA, where m is a real constant. Then,

the first term in (2.31) will shift by m(Im[AĀ]D)/2π. Since the D-term [AĀ]D of AĀ is

real, this shift vanishes. On the other hand, since τ(A) = ∂h(A)/∂A, the presence of the

second term in (2.31) will shift (the Euclidean version of) L′ by

L′ → L′ +
im

4π

∫

M
F ′ ∧ F ′. (2.50)
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Comparing this with Î ′Θ in (2.36), we see that the above transformation shifts Θ by 2πm.

Hence, if m = 1 (or 2), the theory is invariant, since the transformation Θ → Θ + 2π (or

Θ → Θ + 4π) is a symmetry of the theory for M spin (or non-spin), as explained earlier.

In other words, the transformation
(

A

AD

)
→
(

1 0

1 1

)(
A

AD

)
(2.51)

is a duality transformation of the theory when M is spin, while the transformation
(

A

AD

)
→
(

1 0

2 1

)(
A

AD

)
(2.52)

is a duality transformation of the theory when M is non-spin.

Since the 2 × 2 matrices appearing in (2.49) and (2.51) together generate the entire

SL(2,Z) group, we conclude that for M spin, A and AD transform as

(AD, A) → (AD, A)M−1, (2.53)

for any M ∈ SL(2,Z). Hence, we see that (AD, A) transform naturally under the SL(2,Z)

duality of the general, twisted N = 2 pure abelian gauge theory on a spin manifold M .

On the other hand, since the 2 × 2 matrices appearing in (2.49) and (2.52) together

generate the entire Γ0(2) group, we conclude that for M non-spin, A and AD transform as

(AD, A) → (AD, A)M′−1
, (2.54)

for any M
′ ∈ Γ0(2). Hence, we see that (AD, A) transform naturally under the Γ0(2) duality

of the general, twisted N = 2 pure abelian gauge theory on a non-spin manifold M .

Notice that (α, η) transform similarly to (AD, A) under the SL(2,Z) or Γ0(2) duality

of the theory on spin or non-spin four-manifolds. It is in this sense that the actions I ′

and I ′D—expressed in the superfields A and AD—are said to define the “electric” and

“magnetic” frames of the underlying theory, respectively.

2.3 Action of duality on nontrivially-embedded surface operators

Action Under S-duality. The analysis for the case of a nontrivially-embedded surface

operator is similar to the one above except for one crucial difference; in the presence of a

nontrivially-embedded surface operator, we have instead the following physical equivalence

of actions

Î ′D ≡ Î ′ − 2πiηα

∫

M
δD ∧ δD. (2.55)

Note that the term 2πiηα
∫
M δD∧δD is non-vanishing in a generic situation becauseD∩D 6=

0. However, for exact S-duality to hold (in the sense that the dual theory is of the same

kind as the original theory, albeit with complexified gauge coupling τD = −1/τ) at the

quantum level, it suffices that Î ′ ≡ Î ′D modulo 2πiZ. In other words, the condition for

exact S-duality to hold in the quantum theory is that the term 2πiηα
∫
M δD ∧ δD must be

equal to 2πiZ.
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From (2.5), we learn that α
∫
M δD∧δD = αD∩D must always be an integer. Therefore,

for 2πiηα
∫
M δD ∧ δD to be equal to 2πiZ, the parameter η must also be an integer. That

is, exact S-duality can only be maintained if η takes integer values.

Action under a shift in theta-angle. Recall also that for a nontrivially-embedded

surface operator, one must add the terms (α2/2)D∩D and 2πiαηD∩D to (2.38) and (2.40),

respectively. Hence, we have in this case

Î ′Θ + Î ′η = iΘ
(
N + (α2/2)D ∩D

)
− 2πiη (m − αD ∩D) , (2.56)

where N is given in (2.38).

For M spin, the variation in Î ′Θ under T : Θ → Θ + 2π is now (mod 2πiZ)

∆Î ′Θ = −2πiαm + απiZ, (2.57)

where we have made use of the fact that αD ∩D ∈ Z.

Suppose we have the transformation

(α, η) → (α, η − α) (2.58)

under T : τ → τ + 1. Then, the corresponding variation in Î ′η will be given by

∆Î ′η = 2πiαm − 2απiZ. (2.59)

In order for the theory to be invariant under T : τ → τ +1 when the parameters of the

surface operator transform as in (2.58), we must have ∆Î ′Θ + ∆Î ′η = −απiZ = 0 modulo

2πiZ. In other words, α can only be even-integer-valued, for M spin.

For M non-spin, the variation in Î ′Θ under T 2 : Θ → Θ + 4π is now (mod 2πiZ)

∆Î ′Θ = −4πiαm + 2απiZ. (2.60)

Suppose we have the transformation

(α, η) → (α, η − 2α) (2.61)

under T 2 : τ → τ + 2. Then, the corresponding variation in Î ′η will be given by

∆Î ′η = 4πiαm − 4απiZ. (2.62)

In order for the theory to be invariant under T 2 : τ → τ + 2 when the parameters

of the surface operator transform as in (2.61), we must have ∆Î ′Θ + ∆Î ′η = −2απiZ = 0

modulo 2πiZ. In other words, α can only be integer-valued, for M non-spin.

Action under overall duality. Let us now summarise the action of the transformations

S, T and ST 2S on the parameters (α, η). For

S =

(
0 1

−1 0

)
, T =

(
1 1

0 1

)
ST 2S =

(
−1 0

2 −1

)
, (2.63)
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We find that α and η transform as

(α, η) → (α, η)M−1, (2.64)

where M is S or T for M spin, or is S or ST 2S for M non-spin. However, in contrast to

the previous case of a trivially-embedded surface operator, η and α have to be restricted

to integer and even-integer values, respectively, for M spin, and only integer values for M

non-spin, as explained above.

Recall at this point from §2.1, that η, by definition, must take values in R/Z. Hence,

taking η to be integer-valued is equivalent to setting η to zero. In other words, exact

S-duality can only be preserved in the general, twisted N = 2 pure abelian gauge theory

for a class of nontrivially-embedded surface operators which effectively have parameters

(α, η) = (α, 0). Alternatively, notice that since the term 2πiηZ that results in the non-

invariance is a c-number independent of the quantum fields, one could instead allow η

to be non-vanishing and arbitrarily-valued, and claim that exact S-duality holds up to a

c-number only.

On the other hand, recall that α takes values in U(1) ∼= R/2πZ. This means that

α only effectively vanishes if it is an integer multiple of 2π, not when it is an integer.

However, since one is free to subject α to a lattice shift by 2πZ (because α ∼ α + 2πZ),

it will mean that the condition ∆Î ′Θ + ∆Î ′η = −απiZ = 0 mod 2πiZ, or the condition

∆Î ′Θ + ∆Î ′η = −2απiZ = 0 mod 2πiZ—which ensures invariance of the theory under

T : τ → τ + 1 or T 2 : τ → τ + 2, respectively — cannot really be satisfied for any value

of α. At any rate, the term απiZ or 2απiZ, which results in the non-invariance, is a c-

number independent of the quantum fields. This implies that the symmetry T : τ → τ + 1

or T 2 : τ → τ + 2 always holds up to a c-number only.

In summary, we find that for a nontrivially-embedded surface operator, the parameters

(α, η) will transform naturally under SL(2,Z) (or Γ0(2) when M is non-spin) as shown

in (2.64). However, exact S-duality holds if and only if η is effectively zero, while the

overall SL(2,Z) (or Γ0(2)) duality holds up to a c-number at most, regardless.

2.4 Relating the “Ramified” and ordinary Donaldson invariants

We shall now give a brief sketch of how one can, among other things, relate a “ramified”

analog of the celebrated Donaldson invariants [22] to the ordinary Donaldson invariants,

using the results we have found above.

Firstly, let us recall some facts about Donaldson-Witten theory (first define in [23]),

which is obtained via twisting an N = 2 pure SU(2) theory in four-dimensions. On a

generic, non-zero point in the u-plane, where u = a2/2 is the (classical) complex modulus of

the theory (which has R-charge four under a U(1)R symmetry, because a has R-charge two),

the W± bosons will be massive. As such, Donaldson-Witten theory would be represented

by a topological U(1) theory at low energies or large scales. However, over the special point

u = 1—where the “magnetic” frame is the preferred frame for the U(1) theory — massless

monopoles make an appearance [21]. Consequently, the U(1) theory (in the “magnetic”

frame) will, at u = 1, be coupled to a (twisted) matter hypermultiplet which contains
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the massless monopoles in question. A similar thing also happens at the point u = −1,

where massless dyons make an appearance in the effective theory [21]. As a result, the

topological observables in Donaldson-Witten theory (which correspond to the ordinary

Donaldson invariants) can be related — due to the topological and hence scale-invariance

of the theory — to the topological observables of the “magnetic” U(1) theory coupled

to the massless monopoles and dyons (which correspond to the ordinary Seiberg-Witten

invariants [17]). In particular, one can compute the generating function of the Donaldson

invariants in terms of an integral over a generic region of the u-plane and the Seiberg-Witten

invariants at u = ±1 [24]. Note that both the topological theories associated to the u-plane

integral and the Seiberg-Witten invariants are abelian in nature. This just reflects the fact

that in the full quantum theory, the SU(2) gauge symmetry is never restored anywhere on

the u-plane.

Next, note that the “classical” surface operator parameter α and its “quantum” param-

eter η—just like the complexified gauge coupling parameter τ(a)—are expected to receive

perturbative and/or non-perturbative quantum corrections. As such, the effective param-

eters at low-energies will be functions of the original parameters at high-energy. Note also

that the assignment of R-charge in our theory depends only on the form of its (classical)

Lagrangian — which, with the inclusion of surface operators, remains unchanged except

that one has to replace F with F ′ everywhere, and add a charge-free topological term

−iη(δD ∧ F ′). As such, the R-charges of all fields in a “ramified” extension of the theory

will be the same as before. In particular, the (“ramified”) gauge field and scalar a continue

to have R-charges zero and two, respectively. In addition, since the SU(2) gauge symmetry

is never restored anywhere on the u-plane in the full quantum theory, the specific reduction

of the SU(2) gauge group to its U(1) maximal torus along D whenever a surface operator is

present, is irrelevant in regards to computations on the u-plane. Last but not least, because

the effective low-energy Lagrangian L′ and its shift δL′ = − γ
π2F

′ ∧ F ′ (with constant γ)

due to the chiral anomaly take the same form (albeit with F replaced by F ′ everywhere)

as in the case without surface operators, and because the effective instanton number k

that appears in the instanton factor e−8π2k/g is again an integer,5 the exact form of the

holomorphic prepotential F(A)—which determines the exact expression for τ(a) and the

asymptotic behaviour of a and aD etc.—should remain unchanged in the presence of surface

operators. Altogether, this implies that apart from the fact that the parameters of a sur-

face operator might be scale-dependent, the main features of the ordinary theory without

surface operators should carry over to the generalised theory with surface operators.

Now, consider Donaldson-Witten theory with surface operators, such that its topo-

logical observables would correspond to a “ramified” analog of the ordinary Donaldson

5The assertion that the effective instanton number k continues to be an integer in the presence of a

surface operator, is a subtle point which can be justified as follows. Firstly, the instanton number is, in this

case, given by − 1

8π2

R
M

TrF ′∧F ′ = − 1

8π2

R
M

TrF∧F +Trαm− 1

2
Trα2D∩D. The first term − 1

8π2

R
M

TrF∧F

is always an integer while the last term − 1

2
Trα2D∩D is also an integer by virtue of the condition (2.6). The

second term Trαm however, is not an integer, since α ∈ t/Λcochar . Nevertheless, since bI ′
η = −2πiTrηm+ . . . ,

one can absorb this second term by a shift in η when computing the overall instanton factor. Thus, the

effective instanton number will be an integer as stated.
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invariants. Based on what we have said above, we deduce that over a generic region of

the u-plane, the effective topological abelian action would be given by Î ′. At u = 1, the

effective topological abelian action would be given by Î ′D coupled to a (twisted) matter

hypermultiplet which contains the massless monopoles of interest. Likewise at u = −1,

the effective topological action would involve a coupling to massless dyons instead. The

topological observables of the effective theories at u = ±1, should then correspond to a

“ramified” analog of the ordinary Seiberg-Witten invariants. For trivially-embedded sur-

face operators, one might — since (exact) S-duality always holds in the abelian theory with

action Î ′—be able to compute a generating function of “ramified” Donaldson invariants in

terms of an integral over a generic region of the u-plane, and the “ramified” Seiberg-Witten

invariants at u = ±1.

On the other hand, recall that for nontrivially-embedded surface operators, (exact)

S-duality of the abelian theory with action Î ′ holds if and only if the parameters of the

surface operators take the form (α, η) = (α, 0). Since the surface operators of the abelian

theory in the “magnetic” frame (with partial action Î ′D) at u = 1 will have parameters

(0,−α) as such, it would mean that there is no “ramification” at u = 1, that is, one will

end up computing the ordinary Seiberg-Witten invariants at u = 1. This means that if we

start with a high-energy “quantum” parameter that vanishes, and make a judicious choice

of the remaining high-energy “classical” parameter for which the corresponding low-energy

“quantum” parameter also vanishes, one can express the generating function of “ramified”

Donaldson invariants in terms of an integral over a generic region of the u-plane and the

ordinary Seiberg-Witten invariants at u = ±1 (since the contributions at u = −1 will be

related by a discrete symmetry to those at u = 1).

For b+2 > 1, where b+2 is the self-dual second Betti number of M , the contribution from

the u-plane integral vanishes, because there are too many fermionic zero-modes in the

integral measure that cannot be completely absorbed by bringing down interaction terms

in the integrand. Hence, in the nontrivially-embedded case, and for the appropriate choices

of the high-energy parameters as mentioned above, the “ramified” Donaldson invariants

will be expressed solely in terms of the ordinary Seiberg-Witten invariants, which, in turn,

must be expressed solely in terms of the ordinary Donaldson invariants, since b+2 > 1. This

physical observation happens to be consistent with a remarkable mathematical result of

Kronheimer and Mrowka [1], which for b+2 > 1 and D ∩ D 6= 0, expresses the “ramified”

analog of the Donaldson invariants purely in terms of the ordinary Donaldson invariants.

This result is central to the proof of a structure theorem by Kronheimer and Mrowka [1, 16],

that, provides one with a basis for interpreting the ordinary Donaldson invariants in terms

of the ordinary Seiberg-Witten invariants, as, was done, in [17].

A detailed analysis of the above matters, and more, will appear elsewhere in forthcom-

ing work [2].

2.5 Relation to the pure N = 4 theory

Before we end this section, let us comment on the relation between our pure N = 2 theory

and the pure N = 4 theory (whose twisted version has been considered in [9]).
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It is known that the pure N = 4 theory in question can be obtained by including

hypermutliplet matter in the adjoint representation to the pure N = 2 theory considered

above with prepotential F(A) = 1
2τclA

2. Since the resulting Lagrangian is now N = 4

supersymmetric, the supersymmetric field configurations that one obtains by setting the

supersymmetric variations of the fermions to zero, will be different; they will involve, in

addition to the field strength F , the Higgs field φ. (For example, in a particular topological

twist of the resulting N = 4 theory on M = D × D′, where D′ is much smaller than D,

these configurations are given by eq. (2.1) of [9].) Consequently, as mentioned earlier, a

supersymmetric surface operator in the N = 4 theory is one that will introduce a singularity

in both F and φ along D (see eq. (2.2) of [9] for an example); this is in contrast to the

N = 2 case, which only involves a singularity in F . As such, one would also need to shift φ

appropriately in the (Euclidean) Lagrangian in order to have a non-vanishing contribution

to the path-integral, since the positive-definite kinetic term of φ would otherwise be singular

upon integration over M .

At any rate, one can, at least in the abelian case, proceed to prove explicitly that

the parameters of the surface operator do transformation naturally under the SL(2,Z)

duality of the N = 4 theory. This has been done for the twisted theory relevant to the

“ramified” geometric Langlands program in §2.4 of [9], and the somewhat ad-hoc approach

taken there is tantamount to our analysis in §2.2-2.3 if we add to our Lagrangian (2.31) the

appropriate massless N = 2 adjoint hypermultiplet terms that are defined to map — in the

sense of (2.28)—to themselves in the dual fields under S-duality. The transformation of

(α, η)—which involves the term (2.18)—is proved as in §2.2-2.3, while the transformation

of the (classical) parameters (β, γ) which characterize the singularity of the Higgs field φ

along D (see eq. (2.2) of [9]), is obtained by a comparison of the kinetic energy of φ in the

original and dual theory; the parameters (β, γ) ought to transform in accordance with the

fact that the kinetic energy is invariant under S-duality.

For brevity, we shall not elaborate on this further, except to comment that our above-

described framework can also be applied to an arbitrary prepotential F(A); we need not

restrict ourselves to F(A) = 1
2τclA

2 as mentioned above, which is required only to relate

the N = 2 theory to the standard pure N = 4 theory.

3 Effective interaction on the u-plane

In all our discussions so far, we have implicitly assumed that S-duality would hold in the

full quantum theory as long as it holds at the level of the quantum action. This how-

ever, is a naive assumption, because even though the allowable operators in the correlation

functions must be duality-invariant, the measure of the path-integral will transform non-

trivially under the transformations that map the abelian theory in the “electric” frame to

its supposedly equivalent theory in the “magnetic” frame.

Nevertheless, it was shown in [15] that for the non-supersymmetric counterpart of our

theory, the modular anomaly of the partition function manifests itself only when the four-

manifold is curved. This implies that whenever M is a curved four-manifold, the part of
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the measure involving the gauge field will transform nontrivially under S-duality. Thus,

we are bound to have a modular anomaly in the theory on curved M (as presented so far).

On the other hand, if M is flat, there will not be any modular anomaly due to the

transformation of the gauge field. However, one could potentially have an anomaly due

to the nontrivial transformation of the fermions in the measure. In such a case, a little

thought would reveal that the computation of the modular anomaly should be similar to a

computation of an R-symmetry anomaly (which is also due to a nontrivial transformation

of fermions of the same nature in the measure). This implies that the modular anomaly

should be quantified by the index of the kinetic operator acting on the fermions in the

Langragian, which, typically involves the Euler characteristic χ and signature σ of M ,

that, in turn will also vanish if M is flat. This assertion will be justified shortly.

Therefore, the issue is really when M is curved. However, when M is curved in the

twisted abelian theory at hand, interaction terms proportional to
∫
M f(u) trR ∧ R̃ or∫

M g(u) trR ∧ R become possible, where trR ∧ R̃ and trR ∧ R are the densities whose

integrals are proportional to χ and σ, respectively, and f and g are holomorphic functions

of u.6 This implies that one should be able to find — through these additional interaction

terms — an S-dual extension of the twisted abelian theory when M is curved.

In this section, we shall determine the factor

exp (b(u)χ+ c(u)σ) (3.1)

which appears (for u constant) in the path-integral due to these interaction terms. The

reason for doing so is that we would like to affirm our above claim that with these interaction

terms, a consistent S-dual extension of the twisted abelian theory exists for any smooth

M . Moreover, one would also need to know this factor in order to compute the exact

expression of the u-plane integral. To this end, we shall generalise the analysis in §3 of [25]

to include surface operators embedded in M .

3.1 Asymptotic behaviour

A physically consistent choice of the functions b(u) and c(u) would ensure that the factor

in (3.1) matches the expected asymptotic behaviour of the theory at the special points

u = ∞, 1 or −1, where one is in a region of weak coupling and where massless monopoles

or dyons make their appearance, respectively.

Let us first consider the behaviour of the abelian theory at large u, where the “electric”

frame with scalar field a is the preferred frame of the theory. Note that the microscopic,

topological N = 2 pure SU(2) theory associated to our abelian theory in the “electric”

frame has an anomalous U(1)R symmetry, and the anomaly is quantified by the index

of the kinetic operator acting on the fermions in the non-abelian Lagrangian. Recall at

6These interaction terms result from integrating out the massive SU(2) partners of the light fields in the

low-energy theory whose Lagrangian is given by (a twisted version of) L′. The reason why these terms are

admissible as interaction terms of the twisted (and hence topological and BRST-invariant) abelian theory

when M is curved, is because f and g are BRST-invariant while trR∧ eR and trR∧R are locally constructed

functions of the metric related to the topological invariants χ and σ of M . These terms would vanish when

M is flat.
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this point that as explained earlier, the connections in the Lagrangian which contribute

non-vanishingly to the path-integral are such that their corresponding field strengths take

the form F ′ = F − 2παδD . In other words, the various dynamical fields in the theory

are effectively coupled to the gauge field A′, whose field strength is F ′ = dA′ + A′ ∧ A′.7

Consequently, the index would be given by the (virtual) dimension dim(Minst) of the

moduli space Minst of SU(2)-instantons associated with A′; that is, the anomaly would be

given by

∆R = 8k′ − 3

2
(χ+ σ), (3.2)

where k′ = − 1
8π2

∫
M TrF ′ ∧ F ′ is the corresponding instanton number. (That is, operators

with non-zero expectation value must have R-charge equal to ∆R.)

The term of interest here is the part that involves the coupling to gravity, namely,

− 3

2
(χ+ σ). (3.3)

(For flat M , this term will vanish, as highlighted earlier.)

For large u, the W± bosons will be extremely massive, and the SU(2) gauge symmetry

will be spontaneously broken down to a U(1) gauge symmetry, whereby we would have a

U(1) theory with (a twisted version of the) Lagrangian L′ of (2.33). The zero-modes of the

fermion fields λ and λ̄ in (the twisted version of) L′ that live in the u multiplet, would carry

an anomaly equal to the index of the kinetic operator acting on them in the Lagrangian.

Since the fermion fields are not coupled to the gauge field in the kinetic terms of the abelian

theory, the index would be the same as in the case without surface operators; that is, the

anomaly carried by the fermion fields will be given by −(χ+σ)/2. The remaining anomaly

−(χ + σ) must manifest in an interaction that results from integrating out the massive

SU(2) partners of the light fields. Since the interaction must not have any derivatives (else

it would vanish if u is constant), it will be of the forrm (3.1). Thus, at large u, since u has

R-charge four, we must have

ebχ+cσ ∼ u(χ+σ)/4 for u→ ∞. (3.4)

Notice that the factor has R-charge (χ+ σ) and not −(χ+ σ). This is because the factor

results from integrating out the massive modes in the measure, and is hence not an operator

of the theory. Therefore, its R-charge must be such that when one inserts an actual operator

with R-charge equal to the remaining anomaly of −(χ+ σ) in the path-integral, the total

R-charge is zero, so that the resulting correlation function will be invariant under the U(1)R
symmetry, as required.

Let us now analyse the behaviour near u = ±1. The effective Seiberg-Witten theory

at u = 1 has an (accidental) low-energy U(1)R symmetry. The anomaly of this symmetry

is again given by the index of the appropriate kinetic operator in the effective Lagrangian

at u = 1. For a trivially-embedded surface operator, the index would be given by the

7The prime in A′ and F ′ means that they correspond to a connection and curvature of an SU(2)-bundle

over M that is equivalent to the SU(2)-bundle over M \ D with singular connection A and curvature F

along D.
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dimension dim(MSW) of the moduli space MSW of solutions to the “ramified” Seiberg-

Witten equations.8 Thus, the anomaly would, in this case, be given by

− 1

2
(χ+ σ) + c1(L̃

′)2 − σ

4
, (3.5)

where L̃′ is the U(1)-bundle associated to the dual, “magnetic” photon with curvature field

strength F ′
D = FD − 2πηδD .9 For the case of a nontrivially-embedded surface operator,

since there is no “ramification” in the preferred “magnetic” frame near u = 1 as explained

earlier, one just needs to replace L̃′ in (3.5) with the ordinary U(1)-bundle L̃ that has

non-singular curvature field strength. As usual, −(χ + σ)/2 will be the anomaly carried

by the fermions λD and λ̄D in (the twisted version of) the Lagrangian L′
D that are related

to u by duality and supersymmetry. The c1(L̃
′)2 − σ/4 part is due to the monopoles that

become massless at u = 1. Since the contribution c1(L̃
′)2 appears in the behaviour of the

effective gauge couplings near u = 1 [21], it would mean that the gravitational anomaly

−σ/4 ought to manifest itself in an interaction of the form (3.1) when one integrates out

the light monopoles near u = 1. As mentioned, near u = 1, the “magnetic” frame in

the variable aD is the preferred frame. In addition, the mass of the light monopoles near

u = 1 is proportional to aD. Altogether, this implies that aD ≈ c0(u − 1), where c0 is a

constant [21]. In other words, (u − 1) has R-charge two (since aD, like a, has R-charge

two) near u = 1. Hence, this means that

ebχ+cσ ∼ (u− 1)σ/8 for u→ 1. (3.6)

By a similar argument, from the behaviour of the theory near u = −1, where an interaction

of the form (3.1)—that carries the gravitational U(1)R symmetry anomaly −σ/4—results

from integrating out light dyons that become massless only at u = −1, we find that

ebχ+cσ ∼ (u+ 1)σ/8 for u→ −1. (3.7)

From the asymptotic conditions (3.4), (3.6) and (3.7), we conclude that

ecσ ∼ (u2 − 1)σ/8. (3.8)

8The “ramified” Seiberg-Witten equations are given by (FD − 2πηδD)+ + i(MM)+ = 0 and DM = 0,

where the monopole M is a complex spinor field obtained via twisting the scalar fields in the massless

matter hypermultiplet that is coupled to bI ′
D at u = 1, D is the Dirac operator, and the “+” superscript

indicates the self-dual part of the respective fields.
9To see this, first note that the dimension of the moduli space of the ordinary Seiberg-Witten equations

will be given by the index of an elliptic operator T [17]. T is defined by T : Λ1⊕(S+⊗L̃) → Λ0⊕Λ2,+⊕(S−⊗

L̃), where Λp denotes the bundle of real-valued p-forms on M , S± are positive and negative chirality spinor

bundles on M , and L̃ is a complex line bundle whose curvature is an ordinary, non-singular field strength of

the dual, “magnetic” photon. If we now include surface operators, the Seiberg-Witten equations would be

modified as stated in footnote 8; in particular, we would now have (FD −2πηδD)+ = −i(MM)+. This just

corresponds to the fact that M (or M) is now a section of the bundle S+ ⊗ L̃′ (or S+ ⊗ L̃
′−1), where L̃′ is

the U(1)-bundle associated to the dual, “magnetic” photon with curvature field strength F ′
D = FD−2πηδD.

Hence, the expression for the index with surface operators is simply the expression for the ordinary index

but with L̃ replaced by L̃′, as indicated in (3.5).
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However, there is no holomorphic “function” ebχ in u that can satisfy the condi-

tions (3.4), (3.6) and (3.7) all at once. Nonetheless, we should be able to determine the

correct form of ebχ once we know the conditions for which S-duality is preserved even when

M is curved. This will be done in the next two subsections.

3.2 Modular anomaly

We shall now discuss the modular anomaly of the theory when the four-manifold M is

curved. The analysis will be the same for any embedding of surface operators. As such, we

shall not need to discuss the trivially and nontrivially embedded surface operator separately.

To proceed, first recall that the physically equivalent actions Î ′ and Î ′D are such that

they map exactly into each other under the S-duality transformations. Next, note that

operators defined in the correlation functions are, at the outset, defined to be completely

gauge and duality-invariant. Consequently, the only source of a modular anomaly comes

from the way the path-integral measure transforms under S-duality.

In order to ascertain the modular anomaly, we will need to analyse how the integration

measure of the scalar fields, fermions, and gauge fields transform under S-duality. We will

analyse them in turn now.

Integration measure of the scalars. Notice from the explicit expression of L′ in (2.33)

that the kinetic energy of a and ā (in the twisted theory) is proportional to Imτ . Thus,

the integration measure for every mode a′ and ā′ of the scalar fields a and ā will take the

form

(Imτ)da′dā′. (3.9)

From the equivalence of L′ and L′
D in (2.33) and (2.34), we have aD = τa and āD = τ̄ ā.

Since τD = −1/τ and (ImτD) = (Imτ)/τ τ̄ , we find that

(Imτ)da′dā′ = (ImτD)da′Ddā
′
D. (3.10)

Thus, the integration measure of the scalar fields is completely duality-invariant.

Integration measure of the fermions. From the explicit expression of L′ in (2.33),

we see that the kinetic energy of the fermions λ and λ̄ (in the twisted theory) is also

proportional to Imτ . This means that the modes of λ and λ̄ take the forms
√

Imτ ξ and√
Imτ ξ̄, respectively, where ξ and ξ̄ are normalised fermi modes. Since the modes of the

fermions are Grassmannian in nature, the fermionic integration measure for each of these

modes can be written as

d(
√

Imτ ξ) =
dξ√
Imτ

and d(
√

Imτ ξ̄) =
dξ̄√
Imτ

. (3.11)

From the equivalence of L′ and L′
D in (2.33) and (2.34), we have λD = τλ and λ̄D = τ̄ λ̄.

Given that τD = −1/τ , and (ImτD) = (Imτ)/τ τ̄ , we find that

dξ√
Imτ

=

√
τ

τ̄

dξD√
ImτD

and
dξ̄√
Imτ

=

√
τ̄

τ

dξ̄D√
ImτD

. (3.12)
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Let us denote the fermionic measure in the “electric” and “magnetic” frames as dµF

and dµF
D. In order to ascertain how dµF and dµF

D are related under a duality transfor-

mation, first note that there is a pairing of non-zero modes of λ and λ̄. As a result, the

non-zero cancelation of the factors
√
τ/τ̄ and

√
τ̄ /τ in the total measure dµF , depends

only on the difference between the number of zero-modes of λ and λ̄. Next, recall that this

difference is given — via the relevant index theorem — by −(χ+ σ)/2. Altogether, this

means that

dµF = τ−(χ+σ)/4τ̄ (χ+σ)/4dµF
D. (3.13)

Integration measure of the gauge fields. Last but not least, we come to the measure

of the gauge fields. In order to determine how the measure will transform under the duality

transformations, first note that from the gauge kinetic and theta terms in L′ of (2.33), we

know that the gauge kinetic and theta terms of the topological action Î ′ appear as

Î ′ =
iτ̄

4π

∫

M
F ′+ ∧ ⋆F ′+ − iτ

4π

∫

M
F ′− ∧ ⋆F ′− − iη

∫

D
F ′ + · · · , (3.14)

where the “+” and “−” superscripts indicate the self-dual and anti-self-dual parts of F ′,

respectively. Since the transformation of the gauge field measure should be independent

of the explicit form of τ , let us, for simplicity, pick τ such that dτ/da = d2τ/da2 = 0.

Then, from L′ in (2.33), it is clear that the dependence of Î ′ on the field strength F ′

is completely captured by (3.14), that is, there is now no F ′ dependence in the terms

represented by the ellipsis. As such, we can read across from [15] (which studied the

non-supersymmetric counterpart to Î ′ without the terms represented by the ellipsis) to

determine the transformation of the gauge field measure under a duality transformation.

The result is10

dµG = τ−(χ−σ)/4τ̄−(χ+σ)/4dµG
D, (3.15)

where strictly speaking, dµG and dµG
D should be interpreted as the gauge field partition

function of the “electric” and “magnetic” theories, respectively.

The resulting modular anomaly. Let dµ and dµD denote the total integration measure

in the “electric” and “magnetic” frames of the theory. Then, by putting the separate

integration measures for the scalars, fermions and gauge fields found above together, we get

dµ = τ−χ/2dµD. (3.16)

Hence, we see a hint that the factor ebχ ought to be such that it cancels the factor τ−χ/2

so as to maintain S-duality on any M .

3.3 Final determination

We shall now determine the explicit form of ebχ and hence, the effective interaction ebχ+cσ

on the u-plane.

10Due to a sign difference in the theta-term of bI ′ relative to that in [15], one must, in what follows, make

the swop τ ↔ −τ̄ in reading across the result from [15].
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If the theory is to be completely S-dual, from our discussion so far, it would mean that

we must have

ebχ dµ = ebDχ dµD. (3.17)

From (3.16), this means that

ebDχ = τ−χ/2 ebχ, (3.18)

that is, ebχ is a holomorphic “function” in u that must transform with modular weight

−χ/2 under S-duality.

A little thought reveals that such a “function” can be written as

ebχ =

(
(u2 − 1)

dτ

du

)χ/4

. (3.19)

Therefore, we should also have

ebDχ =

(
(u2 − 1)

dτD
du

)χ/4

. (3.20)

From the relation τD = −1/τ , we find that ebχ indeed satisfies (3.18). Also, for u → ∞,

aD ≈ ialnu/π [21]. Since τ = daD/da, we have dτ/du ≈ 1/u. So ebχ ∼ uχ/4 for u → ∞,

as required of condition (3.4). Last but not least, we must also check that the “zero”

in (3.6) as one approaches u = 1, is not violated with the above choices of ebχ and ebDχ.

To proceed, recall that near u = 1, the “magnetic” frame is preferred. Thus, we should

check that ebDχ converges to a non-vanishing constant near u = 1. Near u = 1, we have

dτD/du ∼ 1/(u − 1) [21]. Hence, ebDχ → 2χ/4 ∈ R
+ when u → 1, as required. Likewise,

it can be shown that the “zero” in (3.7) as u → −1 will be preserved for the choices of

ebχ and ebDχ above. Therefore, like the factor ecσ determined earliier, ebχ has the required

asymptotic behaviour near u = ∞, 1 and −1. Hence, we conclude that it must be of the

correct form.

In summary, this means that in any computation on the u-plane, one must include in

the path-integral the interaction factor

ebχ+cσ =

(
(u2 − 1)

dτ

du

)χ/4

(u2 − 1)σ/8. (3.21)

Despite some important differences in the theories with and without (arbitrarily embedded)

surface operators, we find — after a careful analysis of the matter — that the interaction

factor (3.21) is identical to the one computed in [25] for the “unramified” case. In hindsight,

this is not surprising: the additional interaction results from integrating out modes of fields

that appear massive in the low-energy theory and is thus, gravitational in nature, while

the parameters that characterise a surface operator are c-numbers (valued in some Lie

algebra) that do not feature in any computation involving gravity (unless the theory is

gauge field-coupled to (super)gravity).
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4 Dependence on second stiefel-whitney classes, a Spinc structure and

an interesting phase factor

In this final section, we shall, in anticipation of forthcoming work [2] that will compute the

generating function of “ramified” Donaldson invariants in terms of a u-plane integral and

the “ramified” Seiberg-Witten invariants at u = ±1, investigate the possible dependence

of the low-energy abelian theory (and consequently, the Seiberg-Witten theory) on certain

second Stiefel-Whitney classes. For non-spin manifolds, we shall also investigate the possi-

ble appearance of a Spinc structure. In doing so, we will stumble upon an interesting phase

factor — which does not necessarily vanish even on spin manifolds — that is absent in

the “unramified” case. To this end, we shall generalise the analysis in §4 of [25] to include

surface operators, and consider the underlying microscopic gauge groups to be either SU(2)

or SO(3).

The mathematics of spontaneously broken gauge symmetry. However, before we

can proceed any further, we will need to understand the mathematical interpretation of

the spontaneous breaking of the underlying SU(2) or SO(3) gauge symmetry to its U(1)

subgroup on a generic point in the u-plane, at low energies.

For such gauge groups mentioned herein, their connections are said to be reducible [18].

For example, take V to be the rank two SU(2)-bundle. At low energies, it has a decompo-

sition V = T ⊕T−1, where T is a complex line bundle with connection C that corresponds

to the unbroken U(1) on a generic point in the u-plane. The low-energy gauge field is thus

given by C.

Similarly, the rank three SO(3)-bundle E can be decomposed at low energies to E =

R ⊕ L, where R denotes a trivial rank one real bundle over M , and L is a complex line

bundle that corresponds to the unbroken U(1). The connection on L is therefore the low-

energy gauge field A. If w2(E) = 0, E can be lifted to the SU(2)-bundle V , such that

L = T⊗2 and A = 2C.

A topological constraint. When E exists and w2(E) = 0, the first Chern class c1(L) is

an integral cohomology class. This implies the Dirac quantisation condition
∫
U F = 2πZ,

where F = dA is the unbroken U(1) field strength associated to the microscopic SO(3)

gauge group, and U is a two-cycle in M .

However, when w2(E) 6= 0, L does not exist as a line bundle, since c1(L) is no longer

an integral class but lives in the lattice [18]

c1(L) ∈ 2H2(M,Z) +w2(E). (4.1)

For simplicity, let us assume that there is no torsion in the cohomology ofM , so that we

can pick a basis of two-dimensional cycles Uγ in H2(M,Z). Then, w2(E) can be described

by the condition ∫

Uγ

w2(E) = cγ , (4.2)

where cγ = 0 or 1.
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From (4.1), we find the Dirac quantisation condition for the field strength F = dA
to be ∫

Uγ

F = 2π(2kγ + cγ), (4.3)

where kγ ∈ Z.11

4.1 Dependence on w2(E)

Let us take the gauge group to be SO(3) instead of SU(2) in the “unramified” Donaldson-

Witten theory. Then, it is known that the generating functions of Donaldson invariants

depend on the second Stiefel-Whitney class w2(E) of the rank three SO(3)-bundle E [22].

This has also been physically demonstrated in [24] through the expression of the generating

function for Donaldson invariants in terms of the contributions from the u-plane integral

and the Seiberg-Witten invariants at u = ±1. Naturally, one would expect a similar

dependence in the “ramified” version of the story. Let us investigate this further.

Abelian duality in low-energy SO(3) gauge theory. As mentioned above, the ex-

plicit dependence on w2(E) in the “unramified” case can also be seen from the contributions

at u = ±1, that is, from the abelian theory in the “magnetic” frame. As such, we shall de-

termine if the dual , “magnetic” abelian theory will depend on w2(E) in the “ramified” case.

In order to do so, it is clear that because the curvature of E is just the field strength of

the gauge field, it suffices to analyse only the gauge field dependent part of the action. To

this end, first note that since our analysis would again be independent of the explicit form

of τ , let us, for simplicity, choose τ such that dτ/da = 0. Then, the gauge field dependent

part of the topological action Î ′ of the abelian “electric” theory will be given by

Î ′gauge(A, τ, α, η) =
iτ̄

4π

∫

M
F ′+ ∧ ⋆F ′+ − iτ

4π

∫

M
F ′− ∧ ⋆F ′− − iη

∫

D
F ′. (4.4)

Note that Î ′gauge takes the same form as the action considered in [15]. Hence, we shall

adopt the approach taken in [15] toward our analysis of Î ′gauge at hand.

(i) An extended gauge symmetry. Firstly, let us introduce a two-form g that is

invariant under the ordinary abelian gauge symmetry A → A−dǫ (where ǫ is a zero-form).

We would then like to define the following extended gauge symmetry

A → A + 2b

g → g + 2db, (4.5)

where b is a connection one-form on a U(1)-bundle N with curvature db, such that the

usual Dirac quantisation condition
∫
U db/2π ∈ Z is obeyed. Notice that with the above

definition of an extended gauge symmetry, the structure of (4.3)—relevant to an SO(3)

11Since F is the “ramified” field strength, the integral over Uγ—if D coincides with Uγ—will depend on

the extension of the U(1)-bundle (with curvature F ) over D. Nevertheless, the topological condition of (4.3)

will continue to hold.
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gauge theory — will be preserved as required; under (4.5), we have kγ → kγ + n where

n =
∫
Uγ
db/2π is an integer, so F is invariant modulo 4π.

Two points to note before we proceed further are the following. The first point is

that if N has trivial curvature with 2b = −dǫ, one gets back an ordinary abelian gauge

symmetry. Since A is supposed to be a connection on the bundle L, it will mean that

A + 2b must be a connection on the bundle L ⊗ N 2. For trivial (or flat) N , where one

just has an ordinary abelian gauge theory, it is clear that it suffices to consider only some

L in order to define the theory properly. However, in order to generalise the theory to

nontrivial N—that is, for (A + 2b) and (g + 2db) to be physically valid as a gauge field

and two-form, respectively — one must necessarily sum over all L’s. The second point is

that a consequence of an invariance of any theory under (4.5) is that one is free to shift

the periods of g—that is, the integrals of g over U—by integer multiples of 4π:

∫

U
g →

∫

U
g + 4πm, ∀m ∈ Z. (4.6)

(Again, we have made use of the fact that we have
∫
U db ∈ 2πZ).

(ii) The corresponding extended theory. Next, note that one way to modify Î ′gauge

so that we can have invariance under the transformations (4.5), is to replace F ′ with

F ′ = F ′ − g. However, notice that the resulting theory is trivial and not equivalent to the

original theory, because one cannot set g to zero even if we let 2b = −dǫ. Nevertheless, one

can introduce a dual abelian gauge field w (whose “dual” label will be justified shortly),

that is a connection one-form on a dual U(1)-bundle LD with curvature W = dw, and add

to the action Î ′gauge the term

Ĩ = − i

8π

∫

M
d4x

√
hǫmnpqWmngpq = − i

2π

∫

M
W ∧ g. (4.7)

Like any curvature of an ordinary line bundle, we have the condition
∫
U W/2π ∈ Z.12 Thus,

we find that Ĩ is invariant modulo 4πiZ under the extended gauge transformation (4.5). It

is also invariant under the gauge transformation w → w−dǫ̃, where ǫ̃ is a zero-form on M .

Let us now define an extended theory in the fields (A,g,w) with action

(̃I + Î ′gauge)(A,g,w) = − i

2π

∫

M
W ∧ g +

iτ̄

4π

∫

M
F ′+ ∧ ⋆F ′+

− iτ

4π

∫

M
F ′− ∧ ⋆F ′− − iη

∫

D
F ′. (4.8)

Since under (4.5), F ′ is manifestly invariant while Ĩ is invariant modulo 4πiZ, we find

that (̃I + Î ′gauge)(A,g,w) will be invariant modulo 4πiZ under (4.5), as required. It is also

invariant under gauge transformations of w.

12Even though W will turn out to be the dual field strength FD, it will not be constrained by the

refinement (4.3) like F would, because FD is not the field strength of a U(1) symmetry that is left unbroken

from a non-abelian gauge symmetry that is supposedly dual to SO(3) at high energies.
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(iii) The equivalence between the extended and original theories. We would now

like to show that the extended theory with action (̃I + Î ′gauge)(A,g,w) is equivalent to the

original theory with action Î ′gauge. To this end, first note that the partition function of the

extended theory can be written as

1

vol(G)

1

vol(Ĝ)

1

vol(GD)

∑

L,LD

∫
DA Dg Dw exp

(
−(̃I + Î ′gauge)(A,g,w)

)
, (4.9)

where G and its dual GD denote the group of gauge transformations associated to A and

w, and Ĝ denotes the group of extended gauge transformations associated to g. Next, let

us try to compute the path-integral over the w fields. To do this, first write w = w0 + w′,

where w0 is a fixed connection on the line bundle LD. Then, the path-integral over the w

fields can be written as

1

vol(GD)

∑

LD

∫
Dw′ exp

(
i

2π

∫

M
w′ ∧ dg

)
· exp

(
i

2π

∫

M
W0 ∧ g

)
, (4.10)

where W0 = dw0 corresponds to the curvature of the fixed connection w0. W0 is a closed

two-form on M in the cohomology H2(M), as w0 is only defined locally as a one-form.

Noting that
1

vol(GD)

∫
Dw′ exp

(
i

2π

∫

M
w′ ∧ dg

)
= δ(dg), (4.11)

one can compute (4.10) as

∑

W0∈H2(M)

exp

(
i

∫

M
W0 ∧

g

2π

)
· δ(dg) = δ

([ g

2π

]
∈ Z

)
· δ(dg). (4.12)

In other words, we have the condition dg = 0. We also have the condition that
[

g
2π

]

belongs to an integral class, that is, the periods
∫
U g ∈ 2πZ. The first condition says that

one can pick g to be a constant two-form. Together with the second condition and (4.6),

one can indeed obtain g = 0 via the extended gauge transformation (4.5). By setting

g = 0, the action (4.8) will reduce to the original action (4.4). Hence, the theory with

action (̃I + Î ′gauge)(A,g,w) is indeed equivalent to the original theory with action Î ′gauge.

(iv) The abelian theory in the dual, “magnetic” frame. Finally, we would like

to ascertain Î ′gauge in the dual, “magnetic” frame. To this end, we shall make use of the

equivalent action (̃I + Î ′gauge)(A,g,w).

According to [15], one ought to use the extended gauge symmetry (4.5) to set A = 0

for this purpose. However, note that because of the condition (4.3), and the fact that (4.5)

is only good enough to effect integral shifts in kγ as seen earlier, we conclude that for

cγ 6= 0 (that is, w2(E) 6= 0), we cannot set A = 0 using (4.5). The best that we can do

is to use (4.5) to set kγ = 0, so that
∫
Uγ
F = 2πcγ (from (4.3)), such that for a fixed set

of nontrivial line bundles Lγ with connections ζγ and curvatures Gγ in the corresponding

cohomology classes, whereby ∫

Uγ

Gβ = 2πδγβ , (4.13)
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we will have A =
∑

γ cγζγ . Then, by shifting g → g +
∑

γ cγGγ at the same time,13 the

extended action becomes

(̃I + Î ′gauge)(g,w) = − i

2π

∫

M
W ∧ g +

iτ̄

4π

∫

M
g′+ ∧ ⋆g′+ − iτ

4π

∫

M
g′− ∧ ⋆g′− + iη

∫

D
g′

− i

2π

∑

γ

cγ

∫

M
W ∧Gγ , (4.14)

where g′ = g + 2παδD .

Noting that
∫

M
W ∧ g =

∫

M

(
W+ ∧ ⋆g+ −W− ∧ ⋆g−

)
=

∫

M
(W+ · g+) − (W− · g−), (4.15)

one can rewrite the action as

(̃I + Î ′gauge)(g,w) = − i

2π

∫

M
(W+ − 2πηδ+D) · g+ − (W− − 2πηδ−D) · g−

+
iτ̄

4π

∫

M
|2παδ+D + g+|2 − iτ

4π

∫

M
|2παδ−D + g−|2

− i

2π

∑

γ

cγ

∫

M
W ∧Gγ , (4.16)

where |k|2 = k ∧ ⋆k for any two-form k. Note that in the above, we have also used the

fact that the term 2πiηα
∫
M δD ∧ δD which appears in the action can be set to zero modulo

2πiZ; recall that we are either considering trivially-embedded surface operators for which∫
M δD ∧ δD = D∩D = 0, or nontrivially-embedded surface operators whereby αD∩D and

η are both integers. (The appearance of this term is indeed consistent with the observation

in (2.55) of the full supersymmetric theory.)

If we define

g′ = g + 2παδD − 1

τ̄

(
W+ − 2πηδ+D

)
− 1

τ

(
W− − 2πηδ−D

)
, (4.17)

we can rewrite the action as

(̃I + Î ′gauge)(g,w) =
iτ̄

4π

∫

M
|g′+|2 − iτ

4π

∫

M
|g′−|2 − i

4πτ̄

∫

M
|W+ − 2πηδ+D|2 (4.18)

+
i

4πτ

∫

M
|W− − 2πηδ−D|2 + iα

∫

D
(W − 2πηδD)

− i

2π

∑

γ

cγ

∫

M
W ∧Gγ .

Then, by integrating out the g
′+ and g

′− fields classically using the Euler-Lagrange equa-

tions, we have

(̃I + Î ′gauge)(w) = − i

4πτ̄

∫

M
W′+ ∧ ⋆W′+ +

i

4πτ

∫

M
W′− ∧ ⋆W′− + iα

∫

D
W′

− i

2π

∑

γ

cγ

∫

M
W ∧Gγ , (4.19)

13Note that we have implicitly assumed M to be simply-connected in this instance, such that one can

use the ordinary abelian gauge transformation to first set A to pure gauge (whilst preserving (4.3)), before

using (4.5) to set A =
P

γ cγζγ whilst effecting the shift g → g +
P

γ cγGγ simultaneously.

– 29 –



J
H
E
P
0
9
(
2
0
0
9
)
0
4
7

where W′ = W − 2πηδD . Comparing this with (4.4), we have the following physical

equivalence of actions

Î ′gauge(A, τ, α, η) ≡ Î ′gauge(AD, τD, αD, ηD) − i

2π

∑

γ

cγ

∫

M
FD ∧Gγ . (4.20)

where τD = −1/τ , αD = η and ηD = −α, as expected, and AD is the gauge field for the

“magnetic” photon.

The dependence on w2(E). From (4.20), we learn that for the theory in the “magnetic”

frame near u = 1, one must include in the path-integral the additional phase factor

exp

(
i

2π

∑

γ

cγ

∫

M
FD ∧Gγ

)
. (4.21)

From (4.2) and (4.13), we find that we can write

w2(E) =
∑

γ

cγ

[
Gγ

2π

]
. (4.22)

Consequently, the phase factor will be given by

(−1)(c1(L⊗2

D ),w2(E)), (4.23)

where

(c1(L⊗2
D ), w2(E)) =

∫

M
c1(L⊗2

D ) ∧ w2(E), (4.24)

and c1(L⊗2
D ) = 2FD/2π.

Alternatively, if we were to trivially re-scale (4.20) by an overall factor of 1/2 (so as

to agree with the definition of the action in [25]), the phase factor would be given by

(−1)(c1(LD),w2(E)). (4.25)

Hence, we see a dependence on w2(E) via this additional phase factor that must be included

in the path-integral whenever one is dealing with an SO(3) gauge theory that has w2(E) 6=
0. The result of (4.25) is again exactly the same as that found in [25] for the case without

surface operators. This should perhaps not be so surprising. After all, the description of

the gauge field strengths as characteristic classes does not make any reference to the explicit

form of the gauge connections. Consequently, their topological properties and hence the

result of (4.23) should not be modified in the presence of “ramification”. One only has to

be careful when evaluating an integral of a “ramified” field strength over some region in

M that contains D, and our above arguments have not, at any point, required us to do so.

4.2 Appearance of a Spinc structure and an interesting phase factor

In all our discussions in §3 and §4 so far, we have implicitly assumed that the manifold is

spin, that is, w2(M) = 0. As such, additional interaction terms that might appear when

M is non-spin have yet to be considered. In the case without surface operators, such a
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term has been explicitly determined in [25]; where it has been shown to arise when one

integrates out the massive fermions that are the SU(2) (or SO(3)) partners of λ and λ̄.

Note that since the analysis in [25] leading to the determination of the interaction term

only involves the topological description of gauge field strengths in terms of characteristic

classes (that make no reference to the explicit form of the gauge connection), the result

would be similar even when one includes surface operators. In particular, this means

that one ought to have the following additional interaction term in the action when M

is non-spin:

Î ′int =
i

4π

∑

γ

eγ
∫

M
F ′ ∧Gγ , (4.26)

where eγ are integers and

w2(M) ≡
∑

γ

eγ
[
Gγ

2π

]
mod 2. (4.27)

Notice that we have again replaced F with F ′ in the result from [25] in writing (4.26)

above, as we are now including surface operators in the theory.

Clearly, (4.26) vanishes when M is spin. However, when w2(M) 6= 0, a Spinc structure

in the “magnetic” theory near u = 1 would make an appearance because of (4.26). We

shall now demonstrate this claim.

Abelian duality in low-energy SU(2) gauge theory. In order to do so, it suffices

again to analyse only the gauge field dependent part of the action. As before, since the

analysis will be independent of the explicit form of τ , we shall take Î ′gauge to be the gauge

field dependent part of the topological action Î ′ of the abelian “electric” theory. Also, it

would be more illuminating to consider, at this point, the case where w2(E) = cγ = 0.

Hence, any SO(3)-bundle can be lifted to an SU(2)-bundle, and the condition (4.1) which

leads to (4.3) will no longer hold. So let us consider the microscopic theory to be an SU(2)

gauge theory; in other words, the low-energy “electric” abelian gauge field will be C, where

F = dC and F/2π = c1(T ).

The effective action Î ′eff to consider would be Î ′gauge(C, τ, α, η) + Î ′int, that is,

Î ′eff =
iτ̄

4π

∫

M
F ′+ ∧ ⋆F ′+ − iτ

4π

∫

M
F ′− ∧ ⋆F ′− − iη

∫

D
F ′ +

i

4π

∑

γ

eγ
∫

M
F ′ ∧Gγ . (4.28)

The analysis is pretty much the same as before, except for a few differences. Let us comment

on them while we proceed with our computation.

(i) An extended gauge symmetry. Firstly, because of the absence of the refined Dirac

quantisation condition (4.3), the extended gauge symmetry is now

C → C + b

g → g + db, (4.29)

without the factor of two. Consequently, under (4.29), the periods of g would be shifted by
∫

U
g →

∫

U
g + 2πm, ∀m ∈ Z. (4.30)
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(ii) The corresponding extended theory. The extended theory, with the additional

interaction, now reads

(̃I + Î ′eff)(C,g,w) = − i

2π

∫

M
W ∧ g +

iτ̄

4π

∫

M
F ′+ ∧ ⋆F ′+ − iτ

4π

∫

M
F ′− ∧ ⋆F ′−

−iη
∫

D
F ′ +

i

4π

∑

γ

eγ
∫

M
F ′ ∧Gγ . (4.31)

As required, since F ′ = F ′−g is manifestly invariant under (4.29), while Ĩ is now invariant

modulo 2πiZ under (4.29) (because
∫
U W/2π ∈ Z), the extended action is invariant modulo

2πiZ under (4.29), as required.

(iii) The equivalence between the extended and original theories. The partition

function of the extended theory will, in this case, be expressed in terms of the gauge field

C and its SU(2)-bundle T :

1

vol(G)

1

vol(Ĝ)

1

vol(GD)

∑

T,TD

∫
DC Dg Dw exp

(
−(̃I + Î ′eff)(C,g,w)

)
, (4.32)

where G and its dual GD denote the group of gauge transformations associated to C and

w, and Ĝ denotes the group of extended gauge transformations associated to g.

Similarly, one can set g to zero via the condition dg = 0 and (4.30), like before. As

a result, the extended theory with action Ĩ + Î ′eff is equivalent to the original theory with

action Î ′eff.

(iv) The abelian theory in the dual, “magnetic” frame. We are now ready to

ascertain Î ′eff in the dual, “magnetic” frame. To this end, we shall make use of the equivalent

action (̃I + Î ′eff)(C,g,w).

Since we are not constrained by the condition (4.3), we can use the extended gauge

symmetry (4.29) to set C = 0. The extended action then becomes

(̃I + Î ′eff)(g,w) = − i

2π

∫

M
W ∧ g +

iτ̄

4π

∫

M
g′+ ∧ ⋆g′+ − iτ

4π

∫

M
g′− ∧ ⋆g′− + iη

∫

D
g′

− i

4π

∑

γ

eγ
∫

M
g′ ∧Gγ , (4.33)

where g′ = g + 2παδD .

Let us define

wc = w +
1

2

∑

γ

eγζγ . (4.34)

Then, we can rewrite the extended action as

(̃I + Î ′eff)(g,wc) = − i

2π

∫

M
Wc ∧ g +

iτ̄

4π

∫

M
g′+ ∧ ⋆g′+ − iτ

4π

∫

M
g′− ∧ ⋆g′− + iη

∫

D
g′

− iα
2

∑

γ

eγ
∫

D
Gγ , (4.35)

where Wc = dwc.
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We can repeat the computation in (4.15)–(4.19), replacing W with Wc and the last

term in (4.16) with − iα
2

∑
γ e

γ
∫
D Gγ , and we find that

(̃I + Î ′eff)(wc) = − i

4πτ̄

∫

M
W′c+ ∧ ⋆W′c+ +

i

4πτ

∫

M
W′c− ∧ ⋆W′c− + iα

∫

D
W′c

− iα
2

∑

γ

eγ
∫

D
Gγ , (4.36)

where W′c = Wc − 2πηδD . Comparing this with (4.28), we have the following physical

equivalence of actions

Î ′eff(C, τ, α, η, eγ , ζγ) ≡ Î ′gauge(C
c
D, τD, αD, ηD) − iα

2

∑

γ

eγ
∫

D
Gγ , (4.37)

where τD = −1/τ , αD = η and ηD = −α, while Cc
D is the gauge field for the “mag-

netic” photon.

The appearance of a Spinc structure. Notice that the dual field strength F c
D = dCc

D

associated to the “magnetic” theory near u = 1 is such that

F c
D = FD +

1

2

∑

γ

eγGγ , (4.38)

where FD is the dual “magnetic” field strength that one would have had instead if the

additional interaction Î ′int was absent. Even though FD and Gγ are integral classes, the

presence of 1/2 in (4.38) means that F c
D cannot be an integral class, that is, it will not

correspond to a curvature of an ordinary complex line bundle.

The only way that F c
D can be an integral class is when the eγ ’s are all even integers.

However, when this is so, we see from (4.27) that w2(M) will effectively vanish. In other

words, the obstruction to F c
D being a curvature of an ordinary complex line bundle is

w2(M). In turn, this implies that there must exist a bundle T = T c⊗2
D (where F c

D is the

curvature of the “bundle” T c
D), such that c1(T ) ∈ 2H2(M,Z)+w2(M) (since (4.27) means

that w2(M) is an integral class). Such a bundle T is known as a determinant line bundle

of a Spinc structure [18]. Consequently, this means that T c
D cannot exist as a bundle by

itself, but the product S+ ⊗ T c
D, where S+ is a positive chirality spinor bundle on M , does

exist, and is termed a Spinc structure. Indeed, the monopole field M of the Seiberg-Witten

equations that appeared in footnote 8, will, in this case, be a section of S+ ⊗ T c′

D , and it is

always physically well-defined.

An interesting phase factor. From the relation (4.37), we find that one must include

the following phase factor in the Euclidean path-integral near u = 1:

exp

(
iα

2

∑

γ

eγ
∫

D
Gγ

)
. (4.39)

Recall our assumption that there is no torsion in the cohomology of M , and that D has

been defined to be closed and oriented. If we further assume that D is not some boundary
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of a three-manifold in M , we can expand D as

D =
∑

β

dβUβ, (4.40)

where the Uβ’s are a basis of two-homology cycles in H2(M,Z) such that the dβ ’s are

integers. Then, the condition on the Gγ ’s in (4.13) will imply that one can write the phase

factor as

(−1)α(e·d) , (4.41)

where

(e · d) =
∑

γ

eγdγ . (4.42)

If we were to trivially re-scale the relation (4.37) by an overall factor of 1/2 (so as to agree

with the definition of the action in [25]), the exponent of the phase factor—α(e · d)—would

just be multiplied by 1/2.

Thus, we see a dependence on the “classical” surface operator parameter α in a phase

factor of the quantum path-integral of the dual “magnetic” theory. This observation is

consistent with the fact that S-duality maps a “classical” parameter to a “quantum” pa-

rameter and vice-versa (the prototype relations being αD = η and ηD = −α, where η is a

“quantum” parameter).

Note that the phase factor (4.41) is not necessarily trivial even when M is spin; recall

that it suffices for the eγ ’s to be even integers for w2(M) to effectively vanish (and thus, M

to be spin), but the exponent α(e · d) in (4.41) is zero if and only if α and/or (e ·d) vanish.

Last but not least, as will be elaborated in forthcoming work [2], the phase factor (4.41)

is also a crucial ingredient in the physical proof of the relation between the “ramified” and

“unramified” Donaldson invariants, as first established by Kronheimer and Mrowka in [1].

4.3 Combining the two effects

Finally, it will be useful for future computations to derive the combined effect of having

w2(E) 6= 0 and w2(M) 6= 0.

Firstly, w2(E) 6= 0 means that we will necessarily have to consider an SO(3) gauge

theory at high energies. In addition, one is also subject to the refined Dirac quantisation

condition (4.3). As such, it would mean that we can never use the extended gauge invariance

to set A = 0. However, we can still set A =
∑

γ cγ whilst shifting g → g +
∑

γ cγGγ , as

explained earlier. Secondly, w2(M) 6= 0 means that the interaction term (4.26) cannot be

ignored. Altogether, the extended action is now given by

Î ′ext(g,w) = − i

2π

∫

M
Wc ∧ g +

iτ̄

4π

∫

M
g′+ ∧ ⋆g′+ − iτ

4π

∫

M
g′− ∧ ⋆g′− + iη

∫

D
g′

− i

2π

∑

γ

cγ

∫

M
W ∧Gγ − iα

2

∑

γ

eγ
∫

D
Gγ . (4.43)
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Integrating out g like we did before, we get

Î ′ext(Ac
D, τD, αD, ηD) =

iτ̄D
4π

∫

M
(F c′

D )+ ∧ ⋆(F c′

D )+− iτD
4π

∫

M
(F c′

D )− ∧ ⋆(F c′

D )−

−iηD

∫

D
F c′

D − i

4π

∑

γ

cγ

∫

M


2F c

D −
∑

β

eβGβ


 ∧Gγ

− iα
2

∑

γ

eγ
∫

D
Gγ . (4.44)

In other words, if we denote the original combined action as Î ′com, we would have the

following physical equivalence of actions:

Î ′com(A, τ, α, η, eγ , ζγ) ≡ Î ′gauge(Ac
D, τD, αD, ηD) + ∆Î ′ext, (4.45)

where

∆Î ′ext = − i

4π

∑

γ

cγ

∫

M


2F c

D −
∑

β

eβGβ


 ∧Gγ − iα

2

∑

γ

eγ
∫

D
Gγ , (4.46)

F c
D = dAc

D, and Ac
D = AD + 1

2

∑
γ e

γζγ . As always, τD = −1/τ , αD = η and ηD = −α.

Hence, because we have Ac
D and not simply AD, we find that near u = 1, the “mag-

netic” theory would have a Spinc structure S+ ⊗ Lc
D (where Lc

D is the “magnetic” dual of

the SO(3)-bundle L), of which the monopole field M is a section of S+⊗Lc′
D. Moreover, one

must also include the phase factor exp(−∆Î ′ext) in the path-integral when computing the

contributions at u = ±1 (of the corresponding Seiberg-Witten invariants) to the generating

function of the “ramified” Donaldson invariants.

From (4.22) and (4.27), we gather that w2(E) and w2(M) are both integral classes.

Also, note that 2F c
D/2π = c1(Lc⊗2

D ), and since we have a Spinc structure, c1(Lc⊗2
D ) ∈

w2(M) + 2H2(M,Z); thus, c1(Lc⊗2
D ) is an integral class too. Altogether, this means that

we can write the combined phase factor as

(−1)∆+α(e·d) , (4.47)

where

∆ =
(
c1(Lc⊗2

D ) − w2(M), w2(E)
)
. (4.48)

Alternatively, if we were to re-scale the relation (4.45) by an overall factor of 1/2 (so as

to agree with the definition of the action in [25]), the exponent ∆ + α(e · d) in the phase

factor (4.47) would just be multiplied by 1/2.

A final observation which can be made is that the “unramified” part of (4.47) that

survives as we let α, η → 0, can be expressed as

(−1)∆ = e2iπ(Λ0,Λ) (4.49)

modulo a factor of (−1)
1

2
(w2(E),w2(M)), where Λ0 ∈ 1

2w2(E)+H2(M,Z) and Λ = 1
2c1(Lc⊗2

D ).

This agrees exactly with the result in [24] for the combined phase factor of the theory

without surface operators at u = ±1.
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